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FOREWORD

Bell Helicopter Textron Inc. (BHTI) has been conducting a study of finite element modeling of

helicopter airframes to predict vibration. This work is being performed under U.S, Government

Contract NAS1-17496. The contract is monitored by the NASA Langley Research Center, Structures
Directorate.

This report summarizes the procedure used at BHTI for predicting coupled rotor/fuselage

vibrations with an application to the AH-1G two-bladed rotorcraft including comparisons with

flight test vibrations. Key NASA and BHTI personnel are listed below:

NASA Lanqley

Panice H. Clark, Contracting Officer

Joseph W. Owens, Contract Specialist

John H. Cline, Technical Representative

Raymond G. Kvaternik, Leader, Rotorcraft

Structural Dynamics Group

Bell Helicopter Textron Inc.

W. Young, Manager, Research

J. D. Cronkhite, Group Engineer,

Structural Dynamics

R. V. Dompka, Senior Research Engineer

G. Sadler, Chief, Rotor Dynamics

J. Corrigan, Rotor Dynamics Group Engineer

J. Rogers, Rotor Dynamics Engineer

K. S. Perry, Rotor Dynamics Engineer
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INTRODUCTION

The NASA Langley Research Center is sponsoring a rotorcraft structural dynamics program with the
overall objective to establish in the United States a superior capability to utilize finite
element analysis models for calculations to support industrial design of helicopter airframe
structures. Viewed as a whole, the program is planned to include efforts by NASA, universities,
and the U.S. helicopter industry. In the initial phase of the program, teams from the major U.S.
manufacturers of helicopter airframes will apply extant finite element analysis methods to
calculate static internal loads and vibrations of helicopter airframes of both metal and com-
posite construction, conduct laboratory measurements of the structural behavior of these air-

frames, and perform correlations between analysis and measurements to build up a basis upon which
to evaluate the results of the applications. To maintain the necessary scientific observation
and control, emphasis throughout these activities will be on advance planning, documentation of
methods and procedures, and thorough discussion of results and experiences, all with industry-
wide critique to allow maximum technology transfer between companies. The finite element models
formed in this phase will then serve as the basis for the development, application, and
evaluation of both improved modeling techniques and advanced analytical and computational
techniques, all aimed at strengthening and enhancing the technology base which supports
industrial design of helicopter airframe structures. Here again, procedures for mutual critique
have been established, and these procedures call for a thorough discussion among the program
participants of each method prior to the applications and of the results and experiences after
the applications. The aforementioned rotorcraft structural dynamics program has been given the
acronym DAMVIBS (Design Analysis Methods for VIBrationS).

Under the DAMVlBS program, the four industry participants (BHTI, Boeing Helicopters, McDonnell-
Douglas Helicopter, and Sikorsky Aircraft) are to apply existing company methods for coupled
rotor-fuselage analysis to calculate vibrations of the AH-IG helicopter and to correlate with
data available from an Operational Load Survey (OLS) flight test program (References i and 2).
In support of this common activity, BHTI, the manufacturer of the subject aircraft, was tasked to
prepare and provide to the other participants the data needed to independently make these
analyses and correlations. Specifically, BHTI was tasked to:

i. Present a detailed description of the modeling rationale and techniques ased to develop
the AH-IG NASTRAN fuselage finite element vibration model under a previous contract
(Reference 3). A NASTRAN data deck of this model was provided to the other
participating manufacturers.

e Present a detailed description of all previous correlation work used to verify the
finite element model (two versions - stick and built-up tailboom), including the
following:

...._ MENTIONALLy@L_._



a. Ground vibration tests (GVT), static deflection tests and in-flight excitation
simulation (References 4 and 5).

b. Application of the built-up tailboom model predictions to the static _;*,dground
vibration tests of Reference 4.

Co Correlation of both models with other prior AH-IG results contained in References

6 and 7.

. Describe the OLS flight test program on the AH-IG and assemble the vibration data to be
used in the correlations.

. Present the AH-IG rotor system mechanical and aerodynamic coefficient data to all
participants.

References i-7 were used to develop the necessary background on the FEM and flight loads data for
the current rotor/fuselage coupling analysis task as summarized in References 8 and 9.

This report describes work conducted by BHTI to evaluate the adequacy of current theoretical
methods for predicting coupled rotor/fuselage vibration. The analysis methods described herein

represent BHTI's advanced analysis rotorcraft flight simulation computer program C81 (Reference

10) and the industry's primary structural analysis computer program NASTRAN. These analytical
methods form the basis of an approach to helicopter dynamic analysis that has been used

successfully at BHTI for many years. This report describes the analytical formulation of rotor

dynamic equations, fuselage dynamic equations, coupling between the rotor and fuselage, and
solutions to the total system. The coupled analysis is applied to an AH-1G two-bladed rotor

system and results compared with measured OLS flight test vibrations.
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GENERAL PROCEDURE

The general procedure used in this study for calculation of AH-IG vibration characteristics is
depicted on the following page. A Myklestad-type of analysis is used to calculate rotating
elastic blade modal properties. A NASTRAN finite element method is used to form isolated
fuselage modal characteristics. C81 is then used to couple the rotor and airframe math models,
and then calculate rotor hub loads. Finally, the calculated hub loads are used as a forcing
function on the NASTRAN finite element model to calculate the vibration responses.

The Myklestad family of programs has been used at BHTI to calculate helicopter rotor blade
natural frequencies and mode shapes for many years. The capabilities of the program have been
modified to include a complete elastic and inertial representation of the blade, pitch control
systems, and pylon impedances. Recent modifications have been made to enhance user convenience,
to give more accurate results, and to model more advanced rotor configurations.

C81 is a comprehensive rotorcraft flight simulation program used to calculate the aeroelastic
response of the coupled rotor/fuselage system. The structural analysis is based on a modal
technique while rotor aerodynamics are modeled using strip theory and bivariant tables to
represent stall and compressibility effects over the rotor disk.



GENERAL PROCEDURE

MYKLESTAD

ISOLATED ROTOR BLADE
MODAL ANALYSIS

NASTRAN

ISOLATED FUSELAGE
MODAL ANALYSIS

C81

COUPLE ROTOR AND
FUSELAGE, COMPUTE HUB

LOADS

NASTRAN

COMPUTE FUSELAGE
VIBRATION USING C81

HUB LOADS AS FORCING
FUNCTION
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C81 HISTORICAL DEVELOPMENT

Initially, C81 rotor performance and handling qualities were based on an actuator disk

representation with a simple 6 degree-of-freedom rigid fuselage. In 1968, rotor aerodynamics

graduated to strip theory representations with analytic functions dependent on blade radius,
location, and time representing air loads. In addition, the fuselage and rotor were dynamically

coupled. In 1971, CL and CD coefficients were added to the strip theory as well as an
aeroelastic rotor model and rigid pylon representation. 1973 saw the first acceptance of a C81

deck in an analytic competition for rotorcraft design. In 1977, Floquet theory was added to

address the stability of systems whose motion was governed by differential equations with

periodic coefficients (e.g. ground resonance effects). Optimization capabilities were added in

1983 to improve the usefulness of C81 in design and in 1985 the capability to handle 10 elastic

fuselage modes (in addition to six rigid modes) was included in the coupled rotor-fuselage

program.

8



C81 HISTORICAL DEVELOPMENT

1965 ROTOR AERODYNAMIC MODEL

1968 COUPLED ROTOR / FUSELAGE (RIGID)

1971 AEROELASTIC ROTOR

1973 REQUIRED IN AAH / UTTAS COMPETITION

1976 DISSIMILAR BLADES

1977 FLOQUET THEORY ANALYSIS

1983 OPTIMIZATION

1985 ELASTIC FUSELAGE EFFECTS



C81 ANALYSIS CAPABILITY

C81 has the capability to model a wide variety of aircraft and hub configurations as shown on the
following page. BHTI's comprehensive rotorcraft dynamics analysis code C81 is capable of
modeling the following components of a rotorcraft: A fuselage; two rotors, each with a modal
pylon, aeroelastic blades, and a nacelle; a wing; four stabilizing surfaces, none of which must
be purely vertical or horizontal; four external stores or aerodynamic brakes; a nonlinear,
coupled control system including a collective bobweight, stability and control augmentation
system, and maneuver autopilot simulator; two jets; and a weapon.

i0



C81 ANALYSIS CAPABILITY

AIRCRAFT CONFIGURATIONS

0

CONVENTIONAL MR / TR

TANDEM

SIDE BY SIDE

AIRPLANE

WINDMILL

TILT ROTOR

COAXIAL

COMPOUND

DIRIGIBLE

WIND TUNNEL

HUB CONFIGURATIONS

• GIMBALLED

• TEETERING

• ARTICULATED

• HINGELESS
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C81 COORDINATE SYSTEMS

A C81 analysis employs five coordinate systems that describe the behavior of various rotorcraft

components. Each coordinate system is denoted by the following subscript notation.

Subscript

None

f

m

1. Ground Reference - A non-rotating coordinate system taken to be the inertial

reference system.

2. Fuselaqe Reference - A non-rotating coordinate system centered at the fuselage

center of gravity.

3. Mast Reference - A non-rotating coordinate system centered at the top of the

mast.

4. Hub Reference - A rotating coordinate system that shares the same origin as the

mast reference system.

5. Blade Reference - The origin of the blade rotating coordinate system is at the

inboard end of the feathering bearings.

12



C81 COORDINATE SYSTEMS

Ym Zh Zb yh

Yf

(RT)_ Xm

f__ (FWD)__ - Xb
IX

Zf Zm I
(FWD) (DN) (ON)

NONROTATING ROTATING
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BHTI ELASTIC ROTOR BLADE DYNAMIC ANALYSIS

Elastic rotor blade dynamic characteristics are calculated for use in C81 by a Myklestad - based

analysis implemented in a computer code called DNAM06. Blade modal natural frequencies,

generalized inertias, and mode shapes are calculated by DNAM06 in rotating coordinates. All

linear mass and spring terms are included in the DNAM06 analysis. Terms that were deleted from

the DNAM06 analysis in order to simplify the Myklestad analysis, such as the Coriolis

acceleration terms, are included in the forcing function of the C81 rotor analysis. Nonlinear

terms such as flapping springs and flap-lag-torsional moments are also handled by the C81

analysis, as are the coupling effects of the rotor hub's motion.

The following figure lists the assumptions which underlie the linear blade equations of motion in

the Myklestad analysis.
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BHTI ELASTIC ROTOR BLADE DYNAMIC ANALYSIS

ASSUMPTIONS:

• BLADE CROSS SECTIONS ARE NOT SYMMETRIC.

• ELASTIC AXIS IS A PIECEWISE PARALLEL STRAIGHT LINE.

STRUCTURAL PRINCIPAL AXES AND MASS PRINCIPAL AXES ARE PARALLEL, BUT

NOT COINCIDENT.

EFFECTS OF LINEAR AND ANGULAR DISPLACEMENTS AND ACCELERATIONS OF

THE ROTOR HUB ARE INCLUDED.

• EFFECTS OF STEADY BLADE FEATHERING MOTION ARE INCLUDED.

• SHEAR DEFORMATION IS NEGLECTED.

• PRECONE AND UNDERSLING ARE NOT INCLUDED.

15



BHTI ELASTIC ROTOR BLADE REPRESENTATION

The DNAM06 analysis uses a finite element transfer matrix approach to represent blade properties.
The rotor blade is represented by a series of lumped, rigid 3-D dumbell inertias connected by
untwisted, massless, elastic beams. Built-in twist of the blade is introduced incrementally at
the blade stations where the inertias are located. Rotating fully-coupled inplane, out-of-plane,
and torsional deflections of the blade are also considered. Radial extension of the blade is
neglected, however.

A representative blade element is shown in the following figure.
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BHTI ELASTIC ROTOR BLADE REPRESENTATION

3-D INERTIA DUMBELL

ELASTIC AXIS
C.G.

PITCH CHANGE AXIS (REF AXIS SYSTEM)
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MYKLESTAD STATE VECTOR SOLUTION

DNAM06 uses the state vector and transfer matrix type of formulation developed by Myklestad. The

state vectors consist of two linear displacements, three angular rotations, and the shears and

moments corresponding to these displacements and rotations.

The state vector contains the following quantities:

ui

wi

!

U

i

!

W

i

- inplane displacement

- out-of-plane displacement

- in-plane slope

- out-of-plane slope

Vxi - in-plane shear

Vzi - out-of-plane shear

Mzi - out-of-plane moment

Mxi - in-plane moment

_i - torsional deflection about y axis

My i - torsional moment about y axis

The general form of the transfer matrix equation is given on the following page.
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MYKLESTAD STATE VECTOR SOLUTION

WHERE:

{Si} - STATE VECTOR AT STATION I

{Mi} -TRANSFER MATRIX ACROSS INERTIA DUMBELL

[fi] " TRANSFER MATRIX ACROSS ELASTIC ELEMENT OF LENGTH Li
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ROTOR DYNAMIC ANALYSIS BY THE MODAL TECHNIQUE

The time variant aeroelastic rotor representation in C81 is based on a modal analysis approach.
Some of the assumptions contained in this analysis are presented on the following page.

2O



ROTOR DYNAMIC ANALYSIS BY THE MODAL TECHNIQUE

ASSUMPTIONS:

• THE ROTOR BLADE IS DIVIDED INTO THE SAME RADIAL SEGMENTS FOR BOTH

AERODYNAMIC AND DYNAMIC CALCULATIONS.

EACH SEGMENT FACE HAS THREE DEGREES OF FREEDOM THAT ARE USED IN

THE GENERALIZED FORCE CALCULATION. (w - OUT OF PLANE, u - IN PLANE, c_ -

TWIST ABOUT Y AXIS).

DNAM06 (ELASTIC BLADE ANALYSIS) SUPPLIES THE NORMAL MODES THAT

DESCRIBE u, w, AND • DISPLACEMENTS FOR EACH SEGMENT FACE OF EVERY

BLADE MODE.

LINEAR INTERPOLATION IS USED TO DEFINE MODE SHAPES BETWEEN TWO

ADJACENT FACES.

EFFECTS OF STEADY BLADE FEATHERING MOTION ARE INCLUDED.

20 SEGMENTS PER BLADE, MAXIMUM.

11 INPUT BLADE MODES (FROM DNAM06) PER ROTOR, MAXIMUM.

2 ROTORS, MAXIMUM.

7 BLADES PER ROTOR, MAXIMUM.

Z1



ROTOR DYNAMIC ANALYSIS BY THE MODAL TECHNIQUE (Concluded)

The C81 rotor analysis is designed to handle the fully-coupled blade mode shapes calculated by
DNAM06. These mode shapes have several attributes that are important in the modal technique.
Each mode shape is a solution to the coupled differential equations for the free vibration of the
total rotor system. The solution, or mode shape, is obtained by deletion of all velocity
dependent and nonlinear terms. The collection of mode shapes forms an orthogonal set. Each mode
shape has a natural frequency, and it satisfies the appropriate set of boundary conditions
imposed on the blade.
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ROTOR DYNAMIC ANALYSIS BY THE MODAL

TECHNIQUE (CONCLUDED)

ATTRIBUTES OF BLADE MODE SHAPES:

EACH IS A SOLUTION TO THE LINEAR PORTION OF THE

COUPLED DIFFERENTIAL EQUATIONS OF FREE VIBRATION

• EACH HAS A NATURAL FREQUENCY

• THE COLLECTION FORMS AN ORTHOGONAL SET

• EACH SATISFIES IMPOSED BOUNDARY CONDITIONS

23



ROTOR BLADE ROOT BOUNDARY CONDITIONS

The behavior of the rotor hub can be related to the blade mode shapes that are used to describe
the entire rotor system by the boundary conditions presented on the next page. A hub impedance
model is used to include the effects of an isotropic support system in the blade modes. For
collective modes, out-of-plane motion is restrained by one input spring constant and one input
mass. In-plane slope changes are opposed by a torsional spring. For cyclic modes, the in-plane
motion is restrained by one input spring and one input mass.

i
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ROTOR BLADE ROOT BOUNDARY CONDITIONS

MODE TYPE

MOTION

OUT-OF-PLANE IN PLANE TORSION

TWO BLADED

ROTOR

RESPONSE

COLLECTIVE CANTILEVER PINNED CANTILEVER 0,2,4,6p

CYCLIC PINNED CANTILEVER CANTILEVER 1, 3, 5p

25



SOLUTION FORM OF ROTOR DYNAMIC SYSTEM

A separation of variables approach is employed in the solution of the coupled equations as
depicted in the figure. The independent variables are blade radial location y, and time t. The
deflections un, wn, and _n of the n TM elastic blade mode shape are only a function of blade
radial position y. On the left hand side of the equation, u, w, and @ are the total elastic
deformation of the blade which are _pendent upon both blade radial position and time. The modal
participation factor, _n, for the n TM mode is only a function of time.

26



SOLUTION FORM OF ROTOR DYNAMIC SYSTEM

SEPARATION OF VARIABLES

ub',t) NM ut, (y)

{ w(v,t)} = '.2' { wntY) } _5• n

dO(5', t) n = 1 qbn (y)

(t)

u,,,wn,% - COMPONENTS OF NTH BLADE MODE SHAPE.

a,_- PARTICIPATION FACTOR FOR NTH BLADE MODE.

U, W, (t) TOTAL BLADE ELASTIC DEFORMATION.

_M - NUMBER OF BLADE MODES.
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ROTOR BLADE AERODYNAMIC REPRESENTATION

A brief summary of C81 rotor aerodynamic capabilities is listed below:

I. Maximum of 20 radial aerodynamic segments.

2. The airfoil sectional Cl, Cd, and Cm are tabular functions of Mach number and angle of
attack.

3. Momentum theory induced velocity is calculated based either on equations internal to the

program or user input tables.

4. Unsteady aerodynamic options include Theodorsen and Carta theories.

5. The effects of blade elasticity are included.

The rotor blade aerodynamic reference system is shown below.

28



ROTOR BLADE AERODYNAMIC REPRESENTATION

Jb

Jh

SHAFT

AXIS

\

\
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MODAL FORM OF ROTOR AEROELASTIC EQUATIONS

Application of the separation of variables technique to the solution of the rotor blade equations

of motion results in the modal blade equations presented in the figure. Here, Fu is the applied
inplane force, Fw is the applied_ut-of-plane force, M_ is the applied twisting moment and In is
the generalized inertia of the nTM blade mode. Fn is the forcing function due to the aerodynamic

forces and inertial forces, including those forces which were deleted from the Myklestad

analysis. It should be noted that the left hand side of the rotor equations is uncoupled due to

the orthogonality of the mode shapes obtained from DNAM06.

30



SQVO'! "IVII8:INI -

SQVO'! )IINVNAQO_I::IV - _V '"V '"V
"3a3HM

¢I .4- 4'V = cbl4[

01 i'll (1|

1+ V = ,q

PI 11 11

!+ V= ,q

tl U

I I u u u
_= = ._o9+ _

et uqb_N u ._ t, n ""M d+ n el

H

SNOIIVnO::I )IISYI3OI:13V 1:10101:1:10 INI:IO:I 1V(]OIN



C81 ROTOR AERODYNAMIC MODULE

The forcing function terms Au, Aw, A@ on the right hand side of the rotor blade equations of
motion are calculated in the C81 rotor aerodynamic module. Representative inputs and outputs of

this module are shown in the diagram below.
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C81 ROTOR AERODYNAMIC MODULE

BLADE DISPLACEMENTS

BLADE VELOCITIES

FLIGHT CONDITION

RPM

J

THRUST

H-FORCE

Y-FORCE

i

COLLECTIVE

CYCLIC

FUSELAGE ATTITUDE

ROTOR
AERODYNAMIC

MODULE

POWER REQUIRED

F / A FLAPPING

LATERAL FLAPPING

INDUCED VELOCITY

TWIST

CHORD

AIRFOIL DATA

AERODYNAMIC TERMS

Au, Aw, A_ .

RHS OF ROTOR EQUATION
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GENERAL FORM OF BLADE EQUATIONS

The set of previously presented modal equations is sufficient to describe the time variant aero-

elastic response of the rotor blade because of two reasons:

I. The linear effects of blade mass, blade elasticity, and blade geometry are inherently

included in the calculated blade mode shapes and natural frequencies.

o Aerodynamic and aeroelastic effects are included in the forcing terms on the right hand side

of the blade modal equation. Dynamic terms which were deleted from the blade natural fre-

quency and mode shape calculation are also included on the right hand side of this equation.

These dynamic terms arise from angular velocities and accelerations of the rotating

coordinate system, from linear rotor hub accelerations, and from inertial terms such as

Coriolis accelerations.

The following figure presents the general form of the blade equation of motion along with an

indication of the analysis In which each of the terms is calculated,

34



GENERAL FORM OF BLADE EQUATIONS

MASS r 1EFFECTS

STRUCTURAL &
CENTRIFUGAL

STIFFENING
EFFECTS

DISCRETE
STIFFENING

EFFECTS

m I
9

_t-

I

+ m_" × (_:2x r) + F
spring

in

CALCULATED IN MYKLESTAD
BLADE MODE ANALYSIS

FAERO

FUSELAGE
MOTION

(HUB
ACCELERATIONS)

n m

_t 2

CORIOLIS
EFFECTS

/
-- dr

2m_} x --
_t

CALCULATED IN C81

VARIABLE
RPM

EFFECTS

o

(aQ -- m _)Xl-
_t -

NON-ROTATING
SYSTEM

" Zh Yh

Zf Xh __

_ Xf
0

ROTATING
SYSTEM
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FUSELAGE DYNAMIC ANALYSIS

The aeroelastic behavior of a rotor is highly dependent upon the dynamic characteristics of the

fuselage to which it is attached. The fuselage (or nonrotating components) is represented in C81
by the previously discussed modal technique. This modal form of the fuselage equations was
selected in order to provide general motions at the rotor hub with a minimum number of additional
equations (thus reducing computational requirements). This technique allows the use of fuselage
modes based on extremely complex and detailed fuselage/support system models which can be
obtained from structural analysis finite element codes such as NASTRAN. Each fuselage mode shape
can have three linear displacements and three angular rotations at the rotor hub as part of the
modal information. The modal information also contains fuselage natural frequencies, generalized
inertias, and damping where applicable. The C81 analysis is currently designed to handle up to
ten elastic fuselage modal equations. For convenience, C81 has an option to input fuselage modes
that were calculated with or without full rotor mass (included as a point mass), for use in

coupled rotor/fuselage dynamic analysis. A simplifying assumption used by the C81 fuselage
dynamic analysis is that the forcing function comes from the rotor, and that there are no other
aerodynamic or inertial loads applied to the fuselage model.

36



FUSELAGE DYNAMIC ANALYSIS

NO OSCILLATORY AERODYNAMIC FORCES ARE APPLIED TO AERODYNAMIC

SURFACES

HUB DEGREES OF FREEDOM AND HUB LOADS (FROM THE ROTOR) ARE
USED IN THE GENERALIZED FORCE CALCULATIONS.

(THREE LINEAR DISPLACEMENTS: Xj, Yj, Zj AND THREE

ANGULAR ROTATIONS: exj, eyj, ezj OF THE HUB)

NASTRAN (FINITE ELEMENT ELASTIC FUSELAGE ANALYSIS) SUPPLIES THE
NORMAL MODE DATA

• 10 INPUT ELASTIC FUSELAGE MODES (FROM NASTRAN), MAXIMUM

'_l'J



FUSELAGE MODAL EQUATIONS OF MOTION

motion "s pr sen ed on the folio ing ge where
The._oda_l fqrm of t;h_ fuselage _quatton_ of _. is t_e nae_urlat_frequency of _e jl_i__de, _j _Is cne fuselage modal parclclpatlon ]i_ccor,

the damping_[atio specified for the jL, mode, dlj is the generalized inertia of the jth mode, and

Fj is the j_" modal forcing function.
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FUSELAGE MODAL EQUATIONS. OF MOTION

F .

J

MROTOR
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FUSELAGE MODAL FORCING FUNCTION

The modal forcing function Fj on the right hand side of the fuselage modal equation of motion is
given below. The quantities Vmx, Vm , Vmz, Mmx, Mm.., and Mmz are the shear and moment components
at the top of the rotor mast. The_e shears and _ments are calculated by a modal displacement

technique, which combines the hub shear and moment coefficients obtained from the Myklestad

analysis and the solution of the rotor's modal equations of motion Fmx, Fmy, and Fmz are force
components due to any translation of the rotor mass not included in either the rotor or fuselage

analysis. Since there is no radial degree of freedom in the rotor dynamics model, Fmx and Fm
also include the corrections needed to account for the inertial forces associated with radia_

foreshortening.

40



FUSELAGE MODAL FORCING FUNCTION

Fj = Xmj Vmx 4- Ymj Vmy 4" Zmj Vmz

4- 0rex j Minx 4- Omyj Mmy 4- 0mz j am z

4- Xmj Fmx 4- Ymj Fmy 4- Zmj Fmz

OR,

Foj 4. Xmj Fmx 4- Ymj Fmy 4. Zmj Fmz
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TRANSFORMATION OF FUSELAGE COORDINATES

The jth fuselage mode shape is defined in terms of the following displacements at the top of the

mast expressed with respect to the fuselage reference system:

xj - in xf direction

yj - in yf direction

zj - in zf direction

Oxj - about xf axis

Oyj - about yf axis

Ozj - about zf axis

In order to perform the coupled rotor/fuselage analysis, the fuselage mode shapes must be
transformed into the mast reference system. The transformation equation is presented below,

where the subscript "m" refers to the mast reference system and no subscript refers to the

fuselage reference system. This transformation references the fuselage equations to the same

coordinate system as the rotor equations.

42



TRANSFORMATION OF FUSELAGE COORDINATES

(Xmj, Ymj' Zmj) = [Tm/f] (Xj, Yj, Zi)

(Oxmj, Oymj, t_zmj) --" [Tm/f] (flxj , Oyj, ezj)

WHERE: [Tm/f] = FUSELAGE-TO-MAST COORDINATE TRANSFORMATION MATRIX.
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ROTOR HUB ACCELERATION COMPONENTS

The total linear acceleration at the rotor hub is the sum of fuselage elastic contributions and
fuselage rigid body contributions. The terms "Xm, _m, and _m are the rigid body fuselage
acceleration components written with respect to the mast reference axis system. The terms axm,

_ on pg 35 NP is theaym,azm represent the hub accelerations which come from the term m--
number of fuselage elastic modes used in the analysis, at2

44



ROTOR HUB ACCELERATION COMPONENTS

NP

(a xm,a ym,a zm) = _-ZlPJ(xmi, Ymi,Zmi) + (Xm, Ym,Zm)J

NP - NUMBER OF FUSELAGE ELASTIC MODES USED IN ANALYSIS

MAST REFERENCED (NON-ROTATING) COORDINATES

Xm, Ym, Zm " RIGID FUSELAGE ACCELERATION COMPONENTS
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IN-PLANE INERTIAL FORCES DUE TO ROTOR HUB MOTION

The inplane rotor hub accelerations, axm and aym, produce in-plane forces, F I and FR perpendicular

and parallel to the blade, respectively. The inertial loading is separated in this fashion because

for an elastic rotor the F I force is absorbed into the rotor modal equations as part of the forcing

function for the rotor inplane degree of freedom, while the FR term has to be handled separately

since there is no radial degree of freedom in the blade modes.
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INERTIAL HUB FORCES DUE TO ROTOR HUB MOTIOH

After integrating over each blade and summing the contribution of all blades, the inplane rotor

hub forces F . and F _ are given by the following equations. For an elastic rotor analysis the

FI terms in _e equation must be omitted because their effect will be already accounted for in

the modal analysis.
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INERTIAL HUB FORCES DUE TO ROTOR HUB MOTION

NB R

F = _ I
xn_

i=l o

-dF I SIN Wi - dFR COS tFi) dy

NB

F =
ym

i=l

R

J" (-dFICOStYi+dFRSINtYi)dY

O

Ft omitted for elastic rotor analysis
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IN-PLANE INERTIA FORCES FOR AN ELASTIC ROTOR

For an elastic rotor, the inplane force perpendicular to the rotor blade, FI, is already included

in the forcing function that is applied to the elastic rotor blade modal equations, and therefore
the hub loads due to these terms are computed by summation of the load over the number of blade

modes. The inplane force in the radial direction, FR, has to be integrated separately and
included as a hub force in the fuselage equations. FR has to be handled separately because, as

stated earlier, there is no radial degree of freedom in the elastic blade model in Myklestad.

The hub shears due to FR are presented on the following page.

It should be noticed that the out-of-plane inertial force included arising from a__must be
included. For an elastic rotor, a distributed inertia force is included as part o_"_he rotor

forcing function, and the vertical shear that is applied at the rotor hub is computed from the

modal response of the rotor.

Also, the inertia forces on the rotor caused by angular velocities and angular accelerations of

the fuselage are also included in the rotor forcing function. These effects are transmitted to

the fuselage at the rotor hub by means of the net beamwise bending moments computed from the

modal response of the rotor.
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IN-PLANE INERTIA FORCES FOR AN ELASTIC ROTOR

NB NP

F = -M B Z _-

i=1 j=l

"l_j(Xmj COS2 tYi - Ymj COS WiSIN tYi)

NB

- MB Y.

i=l
(Xm COS2 tYi - Ym COS tYiSlN tYi)

F
ym

= MB

NB NP

E Y-

i=l j=l

_j (Xmj COS (Yi SINWi- Ymj SIN2 Wi )

NB

+M B

i=l

(k" COS W. SIN W i - Ym SIN2 W.)
m i l

WHERE: M B = MASS OF ONE BLADE.

NB = NUMBER OF BLADES
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MODAL FORM OF FUSELAGE EQUATIONS OF MOTION

The fuselage modal equations of motion, which include rotor mass, are given on the following page
for a two-bladed elastic rotor. The terms with a single underline are needed to account for the

rotor mass that was included in the NASTRAN analysis. The double underlined terms are the result

of the rotor's radial inertial terms which are not handled by the rotor modal analysis since

there is no radial degree of freedom. The terms on the right hand side of the equation are due

to the rigid body motions (Xm, Ym, Zm) of the airframe.
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MODAL FORM OF FUSELAGE EQUATIONS OF MOTION

• TWO BLADED ROTOR

• ROTOR MASS INCLUDED

NP

2MB lPJ + G---I-" E Pi XmiXmj (COS21ylJ - 1) + YmiYmj(SIN2q J -_11
J i=l

I --zm, z,, u - COS qJ SIN qJ (y.,i Xmj + Xmi ymj) + 2 _ ooj pj

F . 2MB [--2 _ oj
+ ¢o pj GI. "_'i _ m x mj (COS2 qJ - _1) + _m ymj (SIN'2 qJ - _1)

J J

-Zm Zmj - COS tIJ SIN qJ (Ym xmj + x-_ YmJ ) I

WHERE: MB = MASS OF ONE BLADE
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SOLUTION SCHEME FOR DYNAMICALLY COUPLED EQUATIONS OF MOTION

The following sequence of calculations is used to solve the coupled rotor/fuselage dynamic sys-
tem. This sequence was developed to provide a consistent set of equations without the need to
solve the full set of equations simultaneously.

1. Find aerodynamic loading for rotors, empennage, and fuselage. These forces depend only upon
displacements and velocities.

. Compute that portion of the rotor modal forcing functions not dependent on fuselage accel-
erations (such terms as nonlinear flapping springs and dampers and unsteady aerodynamic
effects).

3. Solve for rigid body fuselage accelerations due to rotor excitation.

4. Solve for the accelerations of the fuselage generalized coordinates due to rotor excitation.

5. Add the inertia loads caused by fuselage motion to the rotor modal forcing function.

6. Solve for rotor accelerations.

Hammings Predictor-Corrector Method of numerical integration is used to integrate the equations

of motion.

54



SOLUTION SCHEME FOR DYNAMICALLY COUPLED

EQUATIONS OF MOTION

HUB & BLADE MOTION
FROM PREVIOUS TIME STEP

pg 35

It=t+ At I

NO

STOP

T

COMPUTE HUB SHEARS
AND MOMENTS BY
MODAL APPROACH

COMPUTE AIRFRAME
AERODYNAMIC

FORCES
FOR STEADY TRIM ONLY

CALCU LATE FUSE LAGE
RIGID BODY

ACCE LE RATIONS

CALCULATE FUSELAGE

MODAL ACCELERATIONS

pg 39 1
CALCULATE ROTOR MODE

ACCELERATIONS

pg 45

INTEGRATE ACCELERATIONS
FOR HUB & BLADE MOTION

I

COMPUTE ROTOR
AERODYNAMIC

FORCES

pg 33

I
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Summary of Required C81 Inputs

The inputs to C81 that were necessary to calculate AH-IG OLS hub loads are presented in the figure on the

opposite page. These inputs consist of rotor blade modal data, fuselage modal data, and basic C81 input
data. The rotor blade modal data is calculated by the Myklestad computer program which used OLS inputs

from Reference 2 to describe the physical rotor blade properties. Blade modal data calculated by

Myklestad and used as inputs to C81 consists of natural frequencies, generalized inertias, and mode

shapes. Isolated fuselage modal data is calculated by NASTRAN (based on OLS data) and these data (in the

form of natural frequencies, generalized inertias, and mode shapes) are used in C81 to describe fuselage

dynamic behavior. All other basic C81 inputs were taken from Reference 8 and these inputs, combined with
the rotor and fuselage modal input data, comprise the total AH-IG OLS C81 input deck. Each of these three

sets of data are discussed on the following pages.
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SUMMARY OF REQUIRED C81 INPUTS

AH-1G OLS
ISOLATED ROTOR BLADE

MODAL DATA

MYKLESTAD (DNAMO6)

AH-1G OLS
C81

BASIC DATA

AH-1G OLS
C81

INPUT DECK

AH-1G OLS
ISOLATED FUSELAGE

MODAL DATA

NASTRAN
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Rotor Blade C81 Input Data

The rotor blade modal data required by C81 is calculated by the BHTI Myklestad (DNAM06) computer program.

OLS data is used as input to this program to describe the physical rotor blade properties. This program
then calculates the blade natural frequencies, generalized inertias, and mode shapes for input to C81.

For the present analysis, nine modes were chosen to represent the flexible blade characteristics. Five of
these modes are of the cyclic variety which have pinned out of plane, cantilever inplane, and cantilever

torsional blade boundary conditions. The other four modes are collective in nature and have cantilevered

out-of-plane, pinned inplane, and cantilevered torsional blade boundary conditions.
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ROTOR BLADE C81 INPUT DATA

• CALCULATED BY MYKLESTAD (DNAM06)

MODE FREQUENCY (p) TYPE

1ST OUT-OF-PLANE BENDING

1ST IN-PLANE BENDING

1ST TORSION

2ND OUT-OF-PLANE BENDING

3RD OUT-OF-PLANE BENDING

1.0000

1.3024

2.3781

2.7489

4.5301

CYCLIC

CYCLIC

CYCLIC

CYCLIC

CYCLIC

1ST OUT-OF-PLANE BENDING

1ST TORSION

2ND OUT-OF-PLANE BENDING

3RD OUT-OF-PLANE BENDING

1.0423

2.3356

2.9016

4.7384

COLLECTIVE

COLLECTIVE

COLLECTIVE

COLLECTIVE

• PLUS RESPECTIVE GENERALIZED INERTIAS AND MODE SHAPE DATA
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Fuselage C81 Input Data

NASTRAN was used to calculate the fuselage modal data for use in C81. The full rotor weight, which

includes the rotor, hub, and R-MUX (OLS rotating multiplex instrumentation box) box, was included as a

point mass at the top of the rotor mast in this analysis. The calculated NASTRAN data is then expressed
in a format consistent with C81 input requirements. The calculated mode shapes, for example, must be

transformed into the C81 coordinate system. C81 is capable of handling ten elastic fuselage modes and

thus_ in addition to six rigid body modes of the fuselage calculated by NASTRAN, ten elastic modes were
used to represent the fuselage in the C81 analysis. These modes are listed below and contain the modes
that are most important to a rotor dynamics analysis, namely the pylon pitch and roll modes, and the

fuselage first bending and torsion modes.
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FUSELAGE C81 INPUT DATA

• CALCULATED BY NASTRAN

MODE FREQUENCY (HZ)

PYLON PITCH

PYLON ROLL

1ST FUSELAGE LATERAL BENDING

1ST FUSELAGE VERTICAL BENDING

1ST FUSELAGE TORSION

2ND FUSELAGE VERTICAL BENDING

2ND FUSELAGE LATERALIBENDING

FUSELAGE ROLL/ENGINE LATERAL

MAIN ROTOR MAST LATERAL BENDING

MAIN ROTOR MAST FORE-AFT BENDING

2.99

3.86

7.12

7.96

16.03

17.22

17.77

19.26

25.59

27.10

• PLUS RESPECTIVE GENERALIZED INERTIAS AND MODE SHAPES
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AH-1G OLS C81 TRIM OPTIONS

Two helicopter C81 trim options were employed in this study. The first technique is called "trim to

cyclic - fall through trim". This is basically a "wind tunnel" type of trim and therefore rigid body

effects are not included. These rigid body dynamics are important, however, for accurate loads

calculations. To account for rigid body effects, the helicopter is allowed to fall through trim for a

length of time corresponding to ten rotor revolutions. Ten rotor revolutions were chosen so that no

significant changes between measured and calculated flight conditions would develop. The key point here
is that measured OLS control position data is used as input. The second trim procedure is called "full

aircraft trim" and is representative of the type of analysis that is used during design phases of

helicopter development. Here, only measured OLS flight conditions are used as inputs to C81 and C81

calculates all control positions required to trim the helicopter. The C81 input deck was then submitted
for execution and calculation of rotor hub loads.
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AH-1G OLS C81 TRIM OPTIONS

i

TOCYCL,C! I FUL,A,RCRAFT
FATLmTMHRO-UGHTR'M I I TRIM

I CALCULATED I
! ROTORBLADELOADSI
I RO','ORHUB,_OAOS!
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Basic C81 Input Data

The remaining portion of the basic AH-1G OLS C81 input deck contains mainly physically descriptive data
for items such as the main rotor, fuselage, tail rotor, rotor aerodynamics, fuselage aerodynamics, wings,

stabilizing surfaces, controls, and flight conditions obtained from Reference 2. Also included are groups
that control the basic execution of the program, i.e., error limits, iteration limits, and trim options

which are found in Reference 8.
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BASIC C81 INPUT DATA

DATA OBTAINED FROM REFERENCE 2 (OLS DATA) THAT IS USED FOR "TRIM TO

CYCLIC-FALL THROUGH TRIM" OPTION

1)

2)

3)

4)

ROTOR

FUSELAGE

ROTOR AERODYNAMICS

FLIGHT CONDITIONS

• ADDITIONAL DATA OBTAINED FROM REFERENCE 8 THAT IS USED FOR "FULL

AIRCRAFT TRIM" OPTION

S) TAIL ROTOR

6) FUSELAGE AERODYNAMICS

7) WINGS

8) STABILIZING SURFACES

9) CONTROLS
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AH,1G OLS TRIM CORRELATION

Comparisons between the measured blade feathering and flapping angles and the C81 calculated feathering
and flapping angles are presented in the following two figures, while a comparison of the measured
fuselage pitch and the C81 computed pitch angles is given in the third figure. The test data are
represented by the open symbols while the C81 results are represented by the solid and dashed lines. The
solid line is the result of the "trim to cyclic-fall through trim" option. The dashed line is the result

of using the "full aircraft trim" option.
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Harmonic Analysis of Calculated Time History Data

C81 computes all loads in time history format and thus requires a harmonic analysis to separate out the

magnitudes of the various harmonic loads found in the system. This analysis is "self-contained" in C81

and represented by the equation on the next page. C81 determines the coefficients ao, ak, bk where k in
this case is 2, 4, or 6. The term ao represents the steady load component and the ak and bk are the

oscillatory cosine and sine components of the time history data. Measured OLS data are harmonically

analyzed in a similar manner.
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HARMONIC ANALYSIS OF CALCULATED

TIME HISTORY DATA

• CALCULATE 2,4, 6 PER REV HUB LOADS FROM CALCULATED TIME HISTORY DATA.

f(t}= a o+ _ a k (2Ilk t) b ksin(2Ilk t)
k=l

• COMPARE COMPONENTS TO MEASURED OLS TEST DATA
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AH-IG OLS Rotor Blade Loads Correlation

Comparisons between measured OLS test data and C81 calculated rotor blade loads are presented in the

figures on the next three pages. Some measure of the capability of C81 to predict blade loads (and thus

hub loads) can be gleaned from this comparison. It is these blade loads that sum together to form the
overall hub loads that will be used in the fuselage vibration prediction. Results are presented for three

airspeeds: 67, 114, and 142 KTAS. This covers the low, medium, and high speed flight regimes of the AH-

1G OLS data. The rotor blade beam bending moments, chord bending moments, and torsional moments are

presented as a function of blade radial station at each airspeed considered. The test data are
represented by the solid symbols and the "trim to cyclic-fall through trim" and "full aircraft trim"

analyses are represented by the solid and dashed lines, respectively.
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AH-1G OLS ROTOR BLADE LOADS CORRELATION (CONT'D)

o
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C81AH-1G OLS Hub Shear Predictions

(Trim to Cyclic-Fall through Trim)

The table shows the hub shears that were predicted by C81 using the "trim to cyclic-fall through trim"

procedure outlined earlier. Here, the 2, 4, and 6-per-rev sine and cosine components are tabulated in the

x, y, and z directions for each of the six airspeeds considered. These shears are expressed with respect

to the C81 mast coordinate system and thus a transformation must be performed before they can be used as a

forcing function on a NASTRAN model.
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C81 AH-1G OLS HUB SHEAR PREDICTIONS

(TRIM TO CYCLIC - FALL THROUGH TRIM)

Airspeed and
Direction

67 kn
x s_ar

y shear
z shear

85 kn
x s-h-_ar

y shear
z shear

101 kn
x shear
y shear
z shear

114 kn
x shear
y shear
z shear

128 kn
x shear

y shear
z shear

142 kn
x shear
y shear
z shear

2p (lb) 4p (Ib)
SINE COSINE. SINE COSINE

-76.309 -905.036 -124.780 382.435
862.029 -210.886 -348.996 -125.501
429.443 -344.259 150.856 -211.473

-295.477 -971.699 -23.636 484.145
892.615 -311.216 -400.849 5.118
648.470 55.914 24.282 012.215

-251.855 -1117.387 -108.144 552.523
986.355 -276.693 -447.157 -37.646
734.793 471.520 -104.211 58.411

-284.161 -1317.079 -120.129 658.103
1112.491 -266.761 -552.942 -57.474

797.733 764.088 -140.148 9.268

-111.140 -1492.782 -233.927 726.946
1196.045 -102.522 -628.049 -185.606

827.044 1075.261 -174.716 -132.391

-1298.816 -1383.017 419.215 821.964
1065.050 -845.804 -706.013 352.071

764.981 1487.320 97.327 -181.859

6p (Ib)
SINE COSINE.

56.418 -75.547
67.481 49.302
91.1 59 -31.733

48.578 -149.256
124.443 39.693

36.150 5.981

89.987 -181.971
150.366 73.669

6.130 39.200

113.405 -203.682
167.856 89.103

-4.255 66.954

162.504 -199.739
• 165.572 130.811

-10.406 16.668

5.539 -242.734
209.111 -19.726
-24.724 -19.889
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C81AH-1G OLS Hub Shear Predictions

(Full Aircraft Trim)

The table shows the hub shears that were predicted by C81 using the "full aircraft trim" procedure

outlined earlier. Here, the 2, 4, and 6 per rev sine and cosine components are tabulated in the x, y, and

z directions for each of the six airspeeds considered. These shears are expressed with respect to the C81

mast coordinate system and thus a transformation must be performed before they can be used as a forcing

function on a NASTRAN model.
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C81 AH-1G OLS HUB SHEAR PREDICTIONS

(FULL AIRCRAFT TRIM)

Airspeed and
Direction

67 kn
x s-[_ar

y shear
z shear

85 kn
x sln-_ar
y shear
z shear

101 kn
x shear
y shear
z shear

114 kn
x shear
y shear
z shear

128 kn
x shear

y shear
z shear

142 kn
x shear
y shear
z shear

2p (lb) 4p (ib)
SINE COSINE SINE COSINE

-449.645 -576.629 172.743 194.822
733.817 -360.235 -157.309 128.493
587.896 -395.343 259.044 -218.556

-467.407 -708.048 124.455 283.068
799.933 -350.201 -235.761 154.176
607.275 196.889 6.153 -47.855

-499.956 -829.555 93.004 360.806
859.737 -373.360 -297.710 161.143
619.491 650.008 -132.888 14.012

-559.197 -927.885 106.553 431.586
866.258 -389.821 -323.750 152.446
595.015 983.168 -123.824 -49.834

-665.538 -1001.118 150.310 475.911
860.691 -422.950 -422.327 154.754
527.788 1377.519 -77.821 -224.695

-860.880 -1019.420 244.469 466.649
865.340 -500.791 -413.128 225.223
522.532 1834.928 3.573 -341.358

6p (lb)
SINE COSINE

-46.094 -54.653
39.581 -31.745

108.024 59.815

17.687 -100.732
74.187 6.468
14.830 55.332

47.552 -136.604
103.938 28.909
-27.354 72.013

51.905 -138.333
110.332 28.936
o37.713 83.429

51.352 -122.022
105.556 25.445
-30.798 36.353

35.931 -95.925
84.294 10.720
-2.734 4.944
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Conversion of C81 Hub Loads For NASTRAN Input

The sine and cosine components of the harmonics of hub shears calculated by C81 must be converted to the

proper sign for NASTRAN. The coordinate systems for C81 and NASTRAN are shown in the figure.

The sign change is accounted for in the phase angle representation of NASTRAN dynamic loading. Care must
be used by the analyst when determining phase input because the phase angle equation has limitations. A ±

180 ° change may be required to the predicted phase angle because of these limitations. The limitations
stem from the inability of the arctangent function to distinguish between quadrants I and Ill and

quadrants II and IV for phase angle predictions (i.e., a positive cosine, positive sine input and a -

cosine, -sine input yield identical phase angle results when in reality they are 180 ° out of phase).
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CONVERSION OF C81 HUB LOADS FOR NASTRAN INPUT

+Y
RIGHT

+Z UP
+ Y RIGHT

+X
FORWARD

+Z
DOWN + X AFT

C-81

where

C-81

HARMONIC SERIES LOAD OUTPUT

COORDINATE SYSTEMS

/It) = a +
o la,_s (2nk _ t) + bk sin (2nk _ t)

k=l

f(t) = TIME HISTORY DYNAMIC LOAD VECTOR

NASTRAN

%, ak, b k = INTEGRATION CONSTANTS

= HARMONIC FREQUENCY OF INTEREST(2p, 4p, 6p)

NASTRAN DYNAMIC LOAD INPUT

t = 77ME

2
X = a_ + b k

(_ = tan -1

a k
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Trim to Cyclic Hub Loads (NASTRAN Format)

The hub load predictions for the 2, 4, and 6-per-rev main rotor harmonics, when converted to NASTRAN

amplitude and phase dynamic load format for the trim-to-cyclic ("wind tunnel") case, are shown below.
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TRIM TO CYCLIC HUB LOADS (NASTRAN FORMAT)

Airspeed and 2p 4p 6p
Direction Amplitude Phase Amplitude Phase Amplitude

67 kn
x s--[_ar -908.25 184.82 -402.28 -18.07 -94.29
y shear 887.45 103.75 370.88 250.22 83.57
z shear 550.40 128.72 -259.77 144.50 -96.52

85 kn
x s_--ear -1015.63 196.91 -484.72 -2.79 -156.96
y shear 945.31 109.22 400.88 -89.27 130.62
z shear -650.88 85.07 -27.18 116.70 -36.64

101 kn
x shear -1145.42 192.70 -563.01 -11.07 -203.01
y shear 1024.43 105.67 448.74 265.19 167.44
z shear -873.07 57.31 -119.46 -60.73 -39.68

114kn
xshear -1347.38 192.17 -668.98 -10.34 -233.12
y shear 1144.03 103.48 555.92 264.07 190.04
z shear -1104.63 46.23 -140.45 -86.22 -67.09

128 kn
x shear -1496.91 184.26 -763.66 -17.84 -257.49
y shear 1200.43 94.90 654.90 254.54 211.01
z shear -1356.54 37.57 -219.21 232.85 -19.65

142 kn
x shear -1897.28 223.20 -922.69 27.02 -242.80

y shear 1360.04 128.46 788.93 -63.50 210.04
z shear -1672.52 27.22 -206.26 208.15 -31.73

Phase

143.25
53.85

109.19

161.97
72.31
80.61

153.69
63.90

8.89

150.89
62.04
-3.64

140.87
51.69

-31.98

178.69
95.39

231.19
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Full Aircraft Trim Hub Loads (NASTRAN Format)

The hub load predictions for the 2, 4, and 6-per-rev main rotor harmonics, when converted to NASTRAN

amplitude and phase dynamic load format for the full aircraft trim case, are shown below.
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FULL AIRCRAFT TRIM HUB LOADS (NASTRAN FORMAT)

Airspeed and
Direction

67 kn
x sh--e-ar
y shear
z shear

85 kn
xs_ar
y shear
z shear

101 kn
x shear
y shear
z shear

114 kn
x shear

y shear
z shear

128 kn
x shear
y shear
z shear

142 kn
xshear

y shear
z shear

2p 4p 6p
Amplitude Phase Amplitude Phase Amplitude Phase

-731.22 217.95 -260.38 41.56 -63.50 213.44
817.47 116.15 203.12 -50.76 50.74 128.73

-708.46 123.92 -338.93 130.16 -123.50 61.03

-848.41 213.43 -309.22 23.73 -102.27 170.04
873.23 113.64 281.70 -56.82 74.47 85.02

-638.40 72.40 -48.25 172.67 -57.28 15.00

-968.56 211.08 -372.60 14.45 -144.64 160.81
937.31 113.47 338.52 -61.57 107.88 74.46

-897.93 43.62 -133.62 -83.98 -77.03 -20.80

-1083.36 211.08 -444.54 13.87 -147.75 159.43
949.93 114.23 403.64 -67.81 114.06 75.30

-1149.20 31.18 -133.48 248.08 -91.56 -24.32

-1202.16 213.62 -499.08 17.53 -132.39 157.18
959.00 116.17 449.79 -69.88 108.58 76.45

-1475.17 20.96 -237.79 199.10 -47.65 -40.27

-1334.29 220.18 -526.81 27.65 -102.43 159.47
999.80 120.06 470.53 -61.40 84.97 82.75

-1907.88 15.90 -341.38 179.40 -5.65 151.06
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NASTRAN LOAD CONDITIONS

Regardless of the sophistication of the FEM used for the airframe vibration predictions, the accuracy of
the predicted response depends largely on the_accuracy of the predicted rotor-induced loads transmitted to

the fuselage. This loading environment is very complex. Two different harmonic load cases from C81

analyses will be presented: (1) trim to cyclic-fall through trim and (2) full aircraft trim. In addition
to the rotor-induced harmonic loads acting directly on the fuselage, loads transmitted to the airframe

through the control actuators and aerodynamic forces acting directly on the airframe also affect the

dynamic response. These load conditions are depicted in the figure.
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NASTRAN LOAD CONDITIONS

2, 4, AND 6/REV HUB LOADS.,_

_ j2/REV CONTROL LOADS
/ _|#" (OLS DATA)

2 / REV FIN LOAD

AT 142 KT

(KAMAN DATA)

*C81 HUB SHEAR PREDICTIONS

1. TRIM TO CYCLIC ("WIND TUNNEL" CONDITION)

2. FULL AIRCRAFT TRIM
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2P CONTROL LOADS FROM OLS DATA

Measured 2p boost cylinder axial loads were obtained from the OLS report (Reference 1) for application to

the NASTRAN fuselage model. The effect of these loads on the vibratory response calculations will be

assessed.
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2p CONTROL LOADS FROM OLS DATA

AIRSPEED
(kt)

67

85

101

114

128

142

i

F/A CYCLIC

I

AMP PHASE

336.8 139:9

347.4 137.2

416.8 122.1
i

455.6 120.5

560.4 116.6

721.5 126.3

LATERAL CYCLIC

AMP

502.2

570.1

600.1

640.4

728.3

815.8

PHASE

-160.4

-155.6

-164.1

-176.8

168.6

177.1

COLLECTIVE

AMP

294.6

371.6

557.6

782.9

925.9

972.8

PHASE

15.8

18.7

0.0

-1.7

-6.2

10.9
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KAC Test Data for Force Determination

2p hub shears and tail fin lateral loading at 142 kt-level flight from the KamanAH-IG force determination
tests (Reference 7, pp. 127 and 134) are shown below. Only the lateral fin load was applied to the 2p

lateral response case to assess the effects on vibratory response calculations.
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KAC TEST DATA FOR FORCE

DETERMINATION

FORCE
DIRECTION

VERTICAL AT HUB*

LONGITUDINAL AT HUB*

LATERAL AT HUB*

LATERAL AT TAIL ROTOR GEARBOX

FORCE
DETERMINATION

MAG
(Ib)

1342.

309.

205.

146.

PHASE
(deg)

65

112

240

218

*C81 calculated hub loads were used rather than force
determination hub loads
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2, 4, and 6-per-Rev Flight Vibration Comparisons

Vibration response comparisons of the coupled rotor/fuselage analyses and OLS test measurements

are presented in this section. The comparisons are presented in the following sequence:

1. 2, 4, and 6-per-rev vertical and lateral response comparisons (hub shears only)

a. C81 Hub Shears - Trim-to-cyclic

b. C81 Hub Shears - Full Trim

2. 2-per-rev vertical and lateral response comparisons (combined loads)

a. C81 Hub Shears (Trim-to-cyclic) + Control Loads

b. C81 Hub Shears (Trim-to-cyclic) + Control Loads + Fin Loads

96
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2, 4, AND 6-PER-REV FLIGHT VIBRATION COMPARISONS

2, 4, AND 6/REV VERTICAL AND LATERAL RESPONSE COMPARISONS-

(HUB SHEARS ONLY):

C81 HUB SHEARS TRIM-TO-CYCLIC

C81 HUB SHEARS FULL TRIM

2/REV VERTICAL AND LATERAL RESPONSE COMPARISONS

... _ C81 HUB SHEARS (TRIM-TO-CYCLIC)

COMBINED CONTROL LOADS
LOADS

LATERAL FIN LOAD AT142 KT

t37



TWO-PER-REV VERTICAL RESPONSE - HUB SHEARS ONLY

Response calculations for six airspeeds from 67-142 kn with hub shears applied for the trim-to-
cyclic and full aircraft trim dynamic analyses are compared for the following response points:

FS
l

i. Nose 46

2. Gunner 93

3. Pilot 148

4. Engine Deck 250

Test data from the Operational Loads Survey Report (Reference I) are used for comparison with the

calculated vibrations.

There is generally good agreement between analysis and test.

l
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TWO-PER-REV VERTICAL RESPONSE - HUB SHEARS ONLY

v
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0.4
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0.0
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o.e

i 0.4

0.2
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0.0
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TWO-PER-REV VERTICAL RESPONSE - HUB SHEARS ONLY

Response calculations for six airspeeds from 67-142 kn with hub shears applied for the trim-to-

cyclic and full aircraft trim dynamic analyses are compared for the following response points:

F__S
1. Tailboom Junction 300

2. Elevator 400

3. Tai Iboom, Aft 485

4. Tail Rotor Gearbox 518

Test data from the Operational Loads Survey Report (Reference 1) are used for comparison with the

calculated vibrations.
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TWO-PER-REV LATERAL RESPONSE - HUB SHEARS ONLY

Response calculations for six airspeeds from 67-142 kn with hub shears applied for the trim-to-
cyclic and full aircraft trim dynamic analyses are compared for the following response points:

F__S
1. Nose 46

2. Gunner 93

3. Pi lot 148

4. Engine Deck 250

Test data from the Operational Loads Survey Report (Reference 1) are used for comparison with the

calculated vibrations.

The correlation between test and both analysis cases is poor. The calculations are much lower

than test. Neither case predicts any significant vibration levels in the lateral direction.

This is suspected to be due to not accounting for lateral 2/rev fin loading due to main rotor

downwash which is evaluated in this section of the report.
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TWO-PER-REV LATERAL RESPONSE - HUB SHEARS ONLY
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TWO-PER-REV LATERAL RESPONSE - HUB SHEARS ONLY

Response calculations for six airspeeds from 67-142 kn with hub shears applied for the trim-to-

cyclic and full aircraft trim dynamic analyses are compared for the following response points:

FS

1. Tailboom Junction 300

2. Elevator 400

3. Tail Fin 521

Test data from the Operational Loads Survey Report (Reference I) are used for comparison with the

calculated vibrations.

This is again thought to be due to not accounting for the 2/rev lateral tail fin loading.
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TWO-PER-REV MAIN ROTOR HUB RESPONSE - HUB SHEARS ONLY

Response calculations for six airspeeds from 67-142 kn are compared at the main rotor hub. Only
hub shears are applied to the NASTRAN model for the trim-to-cyclic and full aircraft trim dynamic
analyses. Test data from the Operational Loads Survey Report (Reference i) are used for
comparison with the calculated vibrations.
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FOUR-PER-REV VERTICAL RESPONSE - HUB SHEARS ONLY

Response calculations for six airspeeds from 67-142 kn with hub shears applied for the trim-to-

cyclic and full aircraft trim dynamic analyses are compared for the following response points:

FS
I. Nose 46

2. Gunner 93

3. Pilot 148

4. Engine Deck 250

Test data from the Operational Loads Survey Report (Reference 1) are used for comparison with the

calculated vibrations.
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FOUR-PER-REV VERTICAL RESPONSE - HUB SHEARS ONLY
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FOUR-PER-REVVERTICALRESPONSE- HUBSHEARSONLY

Response calculations for six airspeeds from 67-142 kn with hub shears applied for the trim-to-
cyclic and full aircraft trim dynamic analyses are compared for the following response points:

FS
1. Tai Iboom Junction 300

2. E1evator 400

3. Tai Iboom, Aft 485
4. Tail Rotor Gearbox 518

Test data from the Operational Loads Survey Report (Reference 1) are used for comparison with the

calculated vibrations.
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FOUR-PER-REV LATERAL RESPONSE - HUB SHEARS ONLY

Response calculations for six airspeeds from 67-142 kn with hub shears applied for the trim-to-

cyclic and full aircraft trim dynamic analyses are compared for the following response points:

FS
J

1. Nose 46
2. Gunner g3

3. Pilot 148

4. Engine Deck 250

Test data from the Operational Loads Survey Report (Reference 1) are used for comparison with the

calculated vibrations.
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FOUR-PER-REV LATERAL RESPONSE - HUB SHEARS ONLY
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FOUR-PER-REV LATERAL RESPONSE - HUB SHEARS ONLY

Response calculations for six airspeeds from 67-142 kn with hub shears applied for the trim-to-

cyclic and full aircraft trim dynamic analyses are compared for the following response points:

F__S
1. Tai Iboom Junction 300

2. EIevator 400
3. Tail Fin 525

Test data from the Operational Loads Survey Report (Reference 1) are used for comparison with the

calculated vibrations.
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FOUR-PER-REV LATERAL RESPONSE - HUB SHEARS ONLY
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FOUR-PER-REVMAINROTORHUBRESPONSE- HUBSHEARSONLY

Response calculations for six airspeeds from 67-142 kn are compared at the hub. Only hub shears

are applied to the NASTRAN model for the trim-to-cyclic and full aircraft trim dynamic analyses.
Test data from the Operational Loads Survey Report (Reference 1) are used for comparison with the

calculated vibrations. Note the differences in scale between the fore-aft/lateral response plots

and the vertical response plot for proper comparison.
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FOUR-PER-REV MAIN ROTOR HUB RESPONSE - HUB SHEARS ONLY
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SIX-PER-REV VERTICAL RESPONSE - HUB SHEARS ONLY

Response calculations for six airspeeds from 67-142 kn with hub shears applied for the trim-to-

cyclic and full aircraft trim dynamic analyses are compared for the following response points:

FS

1. Nose 46

2. Gunner 93

3. Pilot 148

4. Engine Deck 250

Test data from the Operational Loads Survey Report (Reference 1) are used for comparison with the

calculated vibrations.
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SIX-PER-REV VERTICAL RESPONSE - HUB SHEARS ONLY

Response calculations for six airspeeds from 67-142 kn with hub shears applied for the trim-to-
cyclic and full aircraft trim dynamic analyses are compared for the following response points:

F_S
1. Tai Iboom Junction 300

2. Elevator 400

3. Tai Iboom, Aft 485
4. Tail Rotor Gearbox 518

Test data from the Operational Loads Survey Report (Reference 1) are used for comparison with the

calculated vibrations.
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SIX-PER-REV VERTICAL RESPONSE - HUB SHEARS ONLY

0.4

II.S

v

J 0.0

0.1

0.0

TIB JUNCTION

"'. °°._°°-°° ..... _.

qIS IS 186 10S

AIRSPEB) (knots)

146

• TEST
TRIM TO CYCLIC

........ FULL AIRCRAFT TRIM

"3
v

0.4

0.3

ELEVATOR

,.J 0.2

El
0.1

0.0

-.. ..................................
._.,..,....___ ............

86 81 406 12S

A I RSPEIE]) (knots)

14S

0.4

0.0

0.1

0.0

AFT TAIL

.. .... ..
o.• . .. ..

". ..-" -

86 81S 10S 10S

AIRSPEED (knOtS)

146

0.3

0.1

0.0

T/R GEARBOX

U 86 10S 12S

AIRSPEED (knoll)

145

121



SIX-PER-REV LATERAL RESPONSE - HUB SHEARS ONLY

Response calculations for six airspeeds from 67-142 kn with hub shears applied for the trim-to-

cyclic and full aircraft trim dynamic analyses are compared for the following response points:

FS

1. Nose 46

2. Gunner 93

3. Pilot 148

4. Engine Deck 250

Test data from the Operational Loads Survey Report (Reference 1) are used for comparison with the

calculated vibrations.
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SIX-PER-REV LATERAL RESPONSE - HUB SHEARS ONLY
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SIX-PER-REV LATERAL RESPONSE - HUB SHEARS ONLY

Response calculations for six airspeeds from 67-i42 kn with hub shears applied for the trim-to-

cyclic and full aircraft trim dynamic analyses are compared for the f_lowing respbnse points:

1. Tailboom Junction

2. Elevator

3. Vertical Tail Fin

Test data from the Operational Loads Survey Report (Reference 1) are used for comparison with the

calculated vibrations.
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SIX-PER-REV LATERAL RESPONSE - HUB SHEARS ONLY

0.4

0.:1

0.1

0.0

16

T/B JUNCTION

""... . ..._;:__ ,

"'-. .

• • • •

I_S 106 126 14§

A| RSiqEH) (krlot s)

. TEST
TRIM TO CYCLIC

........ FULL AIRCRAFT TRIM

0.4

0.=1

3.

0.2

0.1

0.0

ELEVATOR

IS IS t0S t:l$

AI_ (knot=)

146

0.4

0.3

v

_1 0.2

Et
0.1

TAIL FIN

• •

0.0

IS "s 1_ l=s
AI_ (knots)

146

125



SIX-PER-REV MAIN ROTOR HUB RESPONSE - HUB SHEARS ONLY

Response calculations for six airspeeds from 67-142 kn are compared _t the main rotor hub. Only

hub shears are applied to the NASTRAN model for the trim-to-cyclic an_ full aircraft trim dynamic
analyses. Test data from the Operational Loads Survey Report (Reference 1) are used for

comparison with the calculated vibrations. Note the differences in scale between the fore-

aft/lateral response plots and the vertical response plot for proper comparison.
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SIX-PER-REV MAIN ROTOR HUB RESPONSE - HUB SHEARS ONLY
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TWO-PER-REV VERTICAL RESPONSE - HUB AND CONTROL LOADS

Response calculations for six airspeeds from 67-142 kn with hub she_s and boost cylinder loads

applied simultaneously for the trim-to-cyclic and full aircraft trim dynamic analyses are

compared for the following response points:

FS
I. Nose 46

2. Gunner 93
3. Pilot 148

4. Engine Deck 250

Test data from the Operational Loads Survey Report (Reference I) are used for comparison with the

calculated vibrations.
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TWO-PER-REV VERTICAL RESPONSE - HUB AND CONTROL LOADS
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TWO-PER-REV VERTICAL RE_SE - HUB AND CONTROL LOADS

Response calculations for six airspeeds from 67-142 kn with hub shears and boost cylinder loads

applied simultaneously for the trim-to-cyclic and full aircraft trim dynamic analyses are

compared for the following response points:

FS
1. Tai Iboom Junction 300

2. Elevator 400

3. Tai lboom, Aft 485
4. Tail Rotor Gearbox 518

Test data from the Operational Loads Survey Report (Reference I) are used for comparison with the
calculated vibrations.
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TWO-PER-REV LATERAL RESPONSE - HUB, CONTROL, AND FIN LOAD

In addition to the hub shears and boost cylinder loads being applied simultaneously, a tail fin

lateral load was added at 142 kn (see Page 92) for the trim-to-cyclic and full aircraft trim

dynamic analyses. Response calculations for six airspeeds from 67-142 kn are compared for the

following response points:

FS
I. Nose 46

2. Gunner 93

3. Pi lot 148

4. Eng ine Deck 250

Test data from the Operational Loads Survey Report (Reference I) are used for comparison with the
calculated vibrations.
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TWO-PER-REV LATERAL RESPONSE - HUB, CONTROL, AND FIN LOAD

In addition to the hub shears and boost cylinder loads being applie_ simultaneously, a tail fin ,_

lateral load was added at 142 kn (see Page 92) for the trim-to-cyclic and full aircraft trim

dynamic analyses. Response calculations for six airspeeds from 67-142 kn are compared for the

following response points:

FS
I. Tai Iboom Juncti on 300

2. Elevator 400

3. Vertical Tail Fin 521

Test data from the Operational Loads Survey Report (Reference I) are used for comparison with the

calculated vibrations.
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TWO-PER-REV MAIN ROTOR HUB RESPONSE - HUB AND CONTROL LOADS

Response calculations for six airspeeds from 67-142 kn are compared for the hub response point

with hub shears and boost cylinder loads applied simultaneously for the trim-to-cyclic and full

aircraft trim dynamic analyses. Test data from the Operational Loads Survey Report (Reference 1)

are used for comparison with the calculated vibrations.
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TWO-PER-REV MAIN ROTOR HUB RESPONSE - HUB AND

CONTROL LOADS
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CONCLUSIONS

C_

D

o
=_

_C

Test data from an AH-IG Operational Load Survey (OLS) were used for correlation of a coupled

rotor/fuselage analysis. Analytic predictions of hub shears (C81), OLS measured control loads,

and a tail rotor gearbox lateral force were used to excite the NASTRAN model. The control loads
and gearbox lateral force only apply to 2p main rotor harmonic excitation while the hub shears

were determined for 2p, 4p, and 6p harmonics.

The correlation was based on comparing vibration amplitudes in the lateral and vertical

directions at selected fuselage locations for six airspeeds from 67-142 kn.

Conclusions from the rotor/fuselage coupling analysis and flight vibration correlation study are
as follows:

1. An existing analysis method for coupling rotor and fuselage dynamic analyses using the BHTI

Rotorcraft Flight Simulation Program C81 and NASTRAN demonstrated the capability to produce
reasonable response predictions for rotorcraft.

2. There is good agreement between calculated and measured vertical two-per-rev vibration.

This is the predominant excitation frequency for a two-bladed teetering rotor. The
inclusion of 2p control loads significantly affects the response level of certain response
locations.

3. Lateral two-per-rev vibration levels predicted by the coupled rotor/fuselage analyses were
much lower than the measured vibrations at most of the correlation points. Main rotor

downwash on the fin is suspected to be a factor since the correlation was noted to improve

significantly when the two-per-rev fin load was included in the calculations for the 142 kn
condition.

4. Calculated and measured four- and six-per-rev vibration responses agree fairly well. It is

not surmised that the accuracy of the analysis at these frequencies can be judged, however,

since the vibration response at these frequencies was not strongly influenced by modes in
close proximity to the forcing frequency. From the results of vibration test correlations,

the airframe vibration prediction was quantitatively accurate through four-per-rev, but

deviated from measured results significantly at six-per-rev. In addition, when exciting at
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CONCLUSIONS(Continued)

the main rotor hub through the pylon, the correlation obtained was poorer than that obtained
when exciting directly on the airframe. Considering these factors, the agreement between
test and analyses for the four- and six-per-rev responses may have been coincidental. More
information is needed in order to judge the prediction of airframe vibration at these
frequencies.

Recommendationsfor further investigations are as follows:

I. Vibration prediction in the four-per-rev frequency range and above needs further

investigation.

2. Investigate the effect of pylon dynamics on airframe vibration by a combined analytical and

test correlation program.

3. Investigate the main rotor two-per-rev downwash environment on the AH-1G fin.

4. A convenient method for measuring hub shears should be developed for direct correlation with

the analysis.
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CONCLUSIONS

O SUCCESSFUL DEMONSTRATION OF ROTOR/AIRFRAME COUPLING ANALYSIS

- ROTOR ANALYSIS- C81

- FUSELAGE ANALYSIS - NASTRAN

• TWO-, FOUR-, AND SIX-PER-REV CORRELATION

- TWO-PER-REV VERTICAL GOOD

- TWO-PER-REV LATERAL POOR (FIN

SUSPECTED)

- FOUR- AND SIX-PER-REV FAIR

DOWNWASH LOADING

• FURTHER WORK NEEDED

- INVESTIGATE HIGHER FREQUENCY (__> FOUR-PER-REV) VIBRATION
PREDICTIONS

- INVESTIGATE PYLON DYNAMICS

- MEASURE MAIN ROTOR DOWNWASH ON FIN

- DEVELOP HUB SHEAR MEASUREMENT TECHNOLOGY
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